•  
  •  
 

Turkish Journal of Mathematics

Abstract

In this paper we determine $b\in\F_{q^n}^*$ for which the polynomial $f(x)=x^{s+1}+bx\in\F_{q^n}[x]$ is a permutation polynomial and determine $b\in\F_{q^n}^*$ for which the polynomial $f(x)=x^{s+1}+bx\in\F_{q^n}[x]$ is a complete permutation polynomial where $s=\frac{q^n-1}{t}, t\in \mathbb{Z}^+$ such that $t\mid q^n-1$.

DOI

10.3906/mat-1806-83

Keywords

Permutation polynomials, complete permutation polynomials, finite fields

First Page

2154

Last Page

2160

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 4
  • Usage
    • Downloads: 89
    • Abstract Views: 57
see details

Included in

Mathematics Commons

Share

COinS