Turkish Journal of Mathematics
Abstract
In this paper we determine $b\in\F_{q^n}^*$ for which the polynomial $f(x)=x^{s+1}+bx\in\F_{q^n}[x]$ is a permutation polynomial and determine $b\in\F_{q^n}^*$ for which the polynomial $f(x)=x^{s+1}+bx\in\F_{q^n}[x]$ is a complete permutation polynomial where $s=\frac{q^n-1}{t}, t\in \mathbb{Z}^+$ such that $t\mid q^n-1$.
DOI
10.3906/mat-1806-83
Keywords
Permutation polynomials, complete permutation polynomials, finite fields
First Page
2154
Last Page
2160
Recommended Citation
ONGAN, PINAR and TEMÜR, BURCU GÜLMEZ
(2019)
"Some permutations and complete permutation polynomials over finite fields,"
Turkish Journal of Mathematics: Vol. 43:
No.
5, Article 6.
https://doi.org/10.3906/mat-1806-83
Available at:
https://journals.tubitak.gov.tr/math/vol43/iss5/6
- Citations
- Citation Indexes: 4
- Usage
- Downloads: 89
- Abstract Views: 57