Turkish Journal of Mathematics
DOI
10.3906/mat-1806-83
Abstract
In this paper we determine $b\in\F_{q^n}^*$ for which the polynomial $f(x)=x^{s+1}+bx\in\F_{q^n}[x]$ is a permutation polynomial and determine $b\in\F_{q^n}^*$ for which the polynomial $f(x)=x^{s+1}+bx\in\F_{q^n}[x]$ is a complete permutation polynomial where $s=\frac{q^n-1}{t}, t\in \mathbb{Z}^+$ such that $t\mid q^n-1$.
Keywords
Permutation polynomials, complete permutation polynomials, finite fields
First Page
2154
Last Page
2160
Recommended Citation
ONGAN, PINAR and TEMÜR, BURCU GÜLMEZ
(2019)
"Some permutations and complete permutation polynomials over finite fields,"
Turkish Journal of Mathematics: Vol. 43:
No.
5, Article 6.
https://doi.org/10.3906/mat-1806-83
Available at:
https://journals.tubitak.gov.tr/math/vol43/iss5/6