•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1905-20

Abstract

Let $a,\ m$ be positive integers such that $am\not\equiv0\pmod{3}, 2\nmid a$, and $a>3$. We prove that the exponential Diophantine equation $(3am^2-1)^x+(a(a-3)m^2+1)^y=(am)^z$ has only the positive integer solution $(x,y,z)=(1,1,2)$.

Keywords

Diophantine equation, positive integer solution, Fibonacci number

First Page

2561

Last Page

2567

Included in

Mathematics Commons

Share

COinS