Turkish Journal of Mathematics
Abstract
Let $a,\ m$ be positive integers such that $am\not\equiv0\pmod{3}, 2\nmid a$, and $a>3$. We prove that the exponential Diophantine equation $(3am^2-1)^x+(a(a-3)m^2+1)^y=(am)^z$ has only the positive integer solution $(x,y,z)=(1,1,2)$.
DOI
10.3906/mat-1905-20
Keywords
Diophantine equation, positive integer solution, Fibonacci number
First Page
2561
Last Page
2567
Recommended Citation
DENG, N, WU, D, & YUAN, P (2019). The exponential Diophantine equation $(3am^2-1)^x+(a(a-3)m^2+1)^y=(am)^z$. Turkish Journal of Mathematics 43 (5): 2561-2567. https://doi.org/10.3906/mat-1905-20