•  
  •  
 

Turkish Journal of Mathematics

Authors

OQLAH ALREFAI

Abstract

Let $\mathcal{B}_p(\alpha,\beta, \lambda;j)$ be the class consisting of functions $f(z)= z^p+\sum_{k=p+1}^{\infty}a_k z^{k},\; p\in \mathbb{N}$ which satisfy $ \mathrm{Re}\left\{\alpha\frac{f^{(j)}(z)}{z^{p-j}}+\beta\frac{f^{(j+1)}(z)}{z^{p-j-1}}+\left(\frac{\beta-\alpha}{2}\right)\frac{f^{(j+2)}(z)}{z^{p-j-2}}\right\}>\lambda,\;\;(z\in \mathbb{U}=\{z:\; z (5-12\ln 2)/(44-48\ln 2)\approx -0.309$ is sufficient condition for any normalized analytic function $f$ to be starlike in $\mathbb{U}$. The results improve and include a number of known results as their special cases.

DOI

10.3906/mat-1906-65

Keywords

Starlike functions, p-valent functions, Jack's lemma, univalent functions, extreme points, convex functions, distortion and growth theorem, coefficient bounds, differential inequality

First Page

2473

Last Page

2493

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 5
  • Usage
    • Downloads: 54
    • Abstract Views: 21
see details

Included in

Mathematics Commons

Share

COinS