•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1902-105

Abstract

We completely characterize a subclass of Drazin inverses by means of tripotents and nilpotents. We prove that an element $a$ in a ring $R$ has Hirano inverse if and only if $a^2\in R$ has strongly Drazin inverse, if and only if $a-a^3$ is nilpotent. If $\frac{1}{2}\in R$, we prove that $a\in R$ has Hirano inverse if and only if there exists $p^3=p\in comm^2(a)$ such that $a-p\in N(R)$, if and only if there exist two idempotents $e,f\in comm^2(a)$ such that $a+e-f\in N(R)$. Multiplicative and additive results for this generalized inverse are thereby obtained.

Keywords

Drazin inverse, nilpotent, tripotent, multiplicative property, Jacobson's lemma

First Page

2049

Last Page

2057

Included in

Mathematics Commons

Share

COinS