•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1811-83

Abstract

This work aims to develop oscillation criterion and asymptotic behavior of solutions for a class of fractional order differential equation: $D^{\alpha}_{0}u(t)+\lambda u(t)=f(t,u(t)),~~t> 0,$ $D^{\alpha-1}_{0}u(t) _{t=0}=u_{0},~~\lim_{t\to 0}J^{2-\alpha}_{0}u(t)=u_{1}$ where $D^{\alpha}_{0}$ denotes the Riemann--Liouville differential operator of order $\alpha$ with $1

Keywords

Fractional differential equations, oscillation, asymptotic behavior, the Riemann-Liouville differential operator, the Mittag-Leffler function

First Page

1182

Last Page

1194

Included in

Mathematics Commons

Share

COinS