Turkish Journal of Mathematics
DOI
10.3906/mat-1901-109
Abstract
The purpose of this paper is to illustrate the use of the Legendre wavelet method in the solution of high-order nonlinear ordinary differential equations with variable and proportional delays. The main advantage of using Legendre polynomials lies in the orthonormality property, which enables a decrease in the computational cost and runtime. The method is applied to five differential equations up to sixth order, and the results are compared with the exact solutions and other numerical solutions when available. The accuracy of the method is presented in terms of absolute errors. The numerical results demonstrate that the method is accurate, effectual and simple to apply.
Keywords
Legendre wavelets, nonlinear ordinary differential equations, variable delay, proportional delay
First Page
1339
Last Page
1352
Recommended Citation
GÜMGÜM, SEVİN; ÖZDEK, DEMET; and ÖZALTUN, GÖKÇE
(2019)
"Legendre wavelet solution of high order nonlinear ordinary delay differential equations,"
Turkish Journal of Mathematics: Vol. 43:
No.
3, Article 20.
https://doi.org/10.3906/mat-1901-109
Available at:
https://journals.tubitak.gov.tr/math/vol43/iss3/20