Turkish Journal of Mathematics
Abstract
Let $\tau(n)$ stand for the number of positive divisors of $n$. Given an additive function $f$ and a real number $\alpha\in [0,1)$, let $\displaystyle{h_n(\alpha):= \frac 1{\tau(n)} \sum_{d\mid n \atop \{f(d)\}
DOI
10.3906/mat-1808-88
Keywords
Sum of divisors function, shifted primes
First Page
998
Last Page
1004
Recommended Citation
KONINCK, J. M, & KATAI, I (2019). On the divisors of shifted primes. Turkish Journal of Mathematics 43 (2): 998-1004. https://doi.org/10.3906/mat-1808-88