•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1808-88

Abstract

Let $\tau(n)$ stand for the number of positive divisors of $n$. Given an additive function $f$ and a real number $\alpha\in [0,1)$, let $\displaystyle{h_n(\alpha):= \frac 1{\tau(n)} \sum_{d\mid n \atop \{f(d)\}

Keywords

Sum of divisors function, shifted primes

First Page

998

Last Page

1004

Included in

Mathematics Commons

Share

COinS