•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1812-102

Abstract

We investigate the global asymptotic stability of the difference equation of the form \begin{equation*} x_{n+1}=\frac{A x_{n}^{2}+F}{a x_{n}^{2}+e x_{n-1}}, \quad n=0,1,\ldots, \end{equation*}% with positive parameters and nonnegative initial conditions such that $x_0 + x_{-1}>0$. The map associated to this equation is always decreasing in the second variable and can be either increasing or decreasing in the first variable depending on the parametric space. In some cases, we prove that local asymptotic stability of the unique equilibrium point implies global asymptotic stability.

Keywords

Difference equation, attractivity, invariant, period doubling bifurcation, periodic solutions

First Page

894

Last Page

915

Included in

Mathematics Commons

Share

COinS