Turkish Journal of Mathematics
DOI
10.3906/mat-1808-108
Abstract
For any odd prime $p$ such that $p^m \equiv 1 \pmod{4}$, the class of $\Lambda$-constacyclic codes of length $4p^s$ over the finite commutative chain ring ${\cal R}_a=\frac{\mathbb F_{p^m}[u]}{\left\langle u^a \right\rangle}=\mathbb F_{p^m} + u \mathbb F_{p^m}+ \dots + u^{a-1}\mathbb F_{p^m}$, for all units $\Lambda$ of $\mathcal R_a$ that have the form $\Lambda=\Lambda_0+u\Lambda_1+\dots+u^{a-1}\Lambda_{a-1}$, where $\Lambda_0, \Lambda_1, \dots, \Lambda_{a-1} \in \mathbb F_{p^m}$, $\Lambda_0 \,{\not=}\, 0, \, \Lambda_1 \,{\not=}\, 0$, is investigated. If the unit $\Lambda$ is a square, each $\Lambda$-constacyclic code of length $4p^s$ is expressed as a direct sum of a $-\lambda$-constacyclic code and a $\lambda$-constacyclic code of length $2p^s$. In the main case that the unit $\Lambda$ is not a square, we show that any nonzero polynomial of degree $
Keywords
RT distance, constacyclic codes, dual codes, chain rings
First Page
561
Last Page
578
Recommended Citation
DINH, HAI; NGUYEN, BAC; and SRIBOONCHITTA, SONGSAK
(2019)
"RT distance and weight distributions of Type 1 constacyclic codes of length\\ $4p^s$ over $\frac{\mathbb F_{p^m}[u]}{\left\langle u^a \right\rangle}$,"
Turkish Journal of Mathematics: Vol. 43:
No.
2, Article 1.
https://doi.org/10.3906/mat-1808-108
Available at:
https://journals.tubitak.gov.tr/math/vol43/iss2/1