•  
  •  
 

Turkish Journal of Mathematics

Abstract

We find all the eta quotients in the spaces $M_1 \Big(\Gamma_0(12), \left(\frac{d}{\cdot}\right) \Big)$ ($d=-3, -4$) of modular forms and determine their Fourier coefficients, where $\left(\frac{d}{\cdot}\right)$ is the Legendre-Jacobi-Kronecker symbol.

DOI

10.3906/mat-1612-34

Keywords

Dedekind eta function, eta quotients, Eisenstein series, modular forms, cusp forms, Fourier coefficients, Fourier series

First Page

1

Last Page

8

Plum Print visual indicator of research metrics
PlumX Metrics
  • Usage
    • Downloads: 73
    • Abstract Views: 39
  • Captures
    • Readers: 2
see details

Included in

Mathematics Commons

Share

COinS