Turkish Journal of Mathematics
DOI
10.3906/mat-1612-34
Abstract
We find all the eta quotients in the spaces $M_1 \Big(\Gamma_0(12), \left(\frac{d}{\cdot}\right) \Big)$ ($d=-3, -4$) of modular forms and determine their Fourier coefficients, where $\left(\frac{d}{\cdot}\right)$ is the Legendre-Jacobi-Kronecker symbol.
Keywords
Dedekind eta function, eta quotients, Eisenstein series, modular forms, cusp forms, Fourier coefficients, Fourier series
First Page
1
Last Page
8
Recommended Citation
ALACA, AYŞE; ALACA, ŞABAN; and AYGIN, ZAFER SELCUK
(2019)
"Eta quotients of level $\mathbf{12}$ and weight $\mathbf{1}$,"
Turkish Journal of Mathematics: Vol. 43:
No.
1, Article 1.
https://doi.org/10.3906/mat-1612-34
Available at:
https://journals.tubitak.gov.tr/math/vol43/iss1/1