•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1612-34

Abstract

We find all the eta quotients in the spaces $M_1 \Big(\Gamma_0(12), \left(\frac{d}{\cdot}\right) \Big)$ ($d=-3, -4$) of modular forms and determine their Fourier coefficients, where $\left(\frac{d}{\cdot}\right)$ is the Legendre-Jacobi-Kronecker symbol.

Keywords

Dedekind eta function, eta quotients, Eisenstein series, modular forms, cusp forms, Fourier coefficients, Fourier series

First Page

1

Last Page

8

Included in

Mathematics Commons

Share

COinS