Turkish Journal of Mathematics
Abstract
We find all the eta quotients in the spaces $M_1 \Big(\Gamma_0(12), \left(\frac{d}{\cdot}\right) \Big)$ ($d=-3, -4$) of modular forms and determine their Fourier coefficients, where $\left(\frac{d}{\cdot}\right)$ is the Legendre-Jacobi-Kronecker symbol.
DOI
10.3906/mat-1612-34
Keywords
Dedekind eta function, eta quotients, Eisenstein series, modular forms, cusp forms, Fourier coefficients, Fourier series
First Page
1
Last Page
8
Recommended Citation
ALACA, A, ALACA, Ş, & AYGIN, Z. S (2019). Eta quotients of level $\mathbf{12}$ and weight $\mathbf{1}$. Turkish Journal of Mathematics 43 (1): 1-8. https://doi.org/10.3906/mat-1612-34