Turkish Journal of Mathematics
DOI
10.3906/mat-1801-44
Abstract
The pseudo spherical indicatrix of a curve in Minkowski $3$-space emerges as three types: the pseudo spherical tangent indicatrix, principal normal indicatrix, and binormal indicatrix of the curve. The pseudo spherical tangent, principal normal, and binormal indicatrix of a regular curve may be positioned on De Sitter $2$-space (pseudo sphere), pseudo hyperbolic 2-space, and two-dimensional null cone in terms of causal character of the curve. In this paper, we separately derive Euler-Lagrange equations of all pseudo spherical indicatrix elastic curves in terms of the causal character of a curve in Minkowski $3$-space. Then we give some results of solutions of these equations.
Keywords
Elastic curve, Euler-Lagrange equation, pseudo spherical indicatrix
First Page
3123
Last Page
3132
Recommended Citation
YÜCESAN, AHMET; TÜKEL, GÖZDE ÖZKAN; and TURHAN, TUNAHAN
(2018)
"Curves whose pseudo spherical indicatrices are elastic,"
Turkish Journal of Mathematics: Vol. 42:
No.
6, Article 24.
https://doi.org/10.3906/mat-1801-44
Available at:
https://journals.tubitak.gov.tr/math/vol42/iss6/24