Turkish Journal of Mathematics
Abstract
The dominated coloring of a graph $G$ is a proper coloring of $G$ such that each color class is dominated by at least one vertex. The minimum number of colors needed for a dominated coloring of $G$ is called the dominated chromatic number of $G$, denoted by $\chi_{dom}(G)$. In this paper, dominated coloring of graphs is compared with (open) packing number of $G$ and it is shown that if $G$ is a graph of order $n$ with $diam(G)\geq3$, then $\chi_{dom}(G)\leq n-\rho(G)$ and if $\rho_0 (G)=2n/3$, then $\chi_{dom}(G)= \rho_0 (G)$, and if $\rho(G)=n/2$, then $\chi_{dom}(G)=\rho(G)$. The dominated chromatic numbers of the corona of two graphs are investigated and it is shown that if $\mu(G)$ is the Mycielsky graph of $G$, then we have $\chi_{dom} (\mu(G))=\chi_{dom} (G)+1$. It is also proved that the Vizing-type conjecture holds for dominated colorings of the direct product of two graphs. Finally we obtain some Nordhaus--Gaddum-type results for the dominated chromatic number $\chi_{dom}(G)$.
DOI
10.3906/mat-1710-97
Keywords
Dominated coloring, dominated chromatic number, total domination number
First Page
2148
Last Page
2156
Recommended Citation
CHOOPANI, F, JAFARZADEH, A, ERFANIAN, A, & MOJDEH, D. A (2018). On dominated coloring of graphs and some Nordhaus--Gaddum-type relations. Turkish Journal of Mathematics 42 (5): 2148-2156. https://doi.org/10.3906/mat-1710-97