Turkish Journal of Mathematics
DOI
10.3906/mat-1602-67
Abstract
Let $R$ be a regular local ring. In this note, we prove that $Ass_RH^2_I(R)$ is finite for any ideal $I$ of $R$. We also give a sufficient condition for $Ass_RH^3_{(x,y,z)}(R)$ to be finite for $x, y$ an $R$-regular sequence and $z\in R$, which would imply that Lyubeznik's conjecture is true in the regular local rings case.
Keywords
Local cohomology modules, associated primes, regular local rings
First Page
2775
Last Page
2778
Recommended Citation
GAO, YUBIN
(2018)
"A note on the associated primes of local cohomology modules for regular local rings,"
Turkish Journal of Mathematics: Vol. 42:
No.
5, Article 53.
https://doi.org/10.3906/mat-1602-67
Available at:
https://journals.tubitak.gov.tr/math/vol42/iss5/53