Turkish Journal of Mathematics
DOI
10.3906/mat-1707-66
Abstract
In this paper, a collocation approach based on exponential polynomials is introduced to solve linear Fredholm-Volterra integro-differential equations under the initial boundary conditions. First, by constructing the matrix forms of the exponential polynomials and their derivatives, the desired exponential solution and its derivatives are written in matrix forms. Second, the differential and integral parts of the problem are converted into matrix forms based on exponential polynomials. Later, the main problem is reduced to a system of linear algebraic equations by aid of the collocation points, the matrix operations, and the matrix forms of the conditions. The solutions of this system give the coefficients of the desired exponential solution. An error estimation method is also presented by using the residual function and the exponential solutions are improved by the estimated error function. Numerical examples are solved to show the applicability and the effectiveness of the method. In addition, the results are compared with the results of other methods.
Keywords
Collocation method, exponential polynomials, exponential solutions, Fredholm-Volterra integro-differential equations, initial boundary conditions, residual improvement
First Page
2546
Last Page
2562
Recommended Citation
YÜZBAŞI, ŞUAYİP
(2018)
"An exponential method to solve linear Fredholm-Volterraintegro-differential equations and residual improvement,"
Turkish Journal of Mathematics: Vol. 42:
No.
5, Article 34.
https://doi.org/10.3906/mat-1707-66
Available at:
https://journals.tubitak.gov.tr/math/vol42/iss5/34