Turkish Journal of Mathematics
DOI
10.3906/mat-1805-11
Abstract
We show existence results of positive solutions of Neumann problems for a discrete system: $$\aligned &\eta\Delta^2(A_{k-1}-A^0_{k-1})-A_{k}+A^0_{k}+N_kA_{k}=0,\ \ k\in[2, n-1]_\mathbb{Z},\\ &\Delta\big(\Delta N_{k-1}-2N_k\frac{\Delta A_{k-1}}{A_{k}}\big)-N_kA_{k}+A^1_{k}-A^0_{k}=0,\ \ k\in[2, n-1]_\mathbb{Z},\\ &\Delta A_{1}=0=\Delta A_{n-1},\ \ \Delta N_{1}=0=\Delta N_{n-1}, \endaligned $$ where the assumptions on $\eta,\ A_k^0$, and $A_k^1$ are motivated by some mathematics models for house burglary. Our results are based on the topological degree theory.
Keywords
Neumann boundary value problems, nonconstant positive solutions, topological degree theory
First Page
2371
Last Page
2379
Recommended Citation
CHEN, TIANLAN; MA, RUYUN; and LIANG, YONGWEN
(2018)
"Positive solutions of Neumann problems for a discrete system coming from models of house burglary,"
Turkish Journal of Mathematics: Vol. 42:
No.
5, Article 21.
https://doi.org/10.3906/mat-1805-11
Available at:
https://journals.tubitak.gov.tr/math/vol42/iss5/21