Turkish Journal of Mathematics
DOI
10.3906/mat-1509-50
Abstract
In this paper, we introduce a class of unitary operators defined on the Bergman space $L_a^2(\mathbb{C}_+)$ of the right half plane $\mathbb{C}_+$ and study certain algebraic properties of these operators. Using these results, we then show that a bounded linear operator $S$ from $L_a^2(\mathbb{C}_+)$ into itself commutes with all the weighted composition operators $W_a, a \in \mathbb{D}$ if and only if $\widetilde{S}(w)=\langle Sb_{\overline{w}},b_{\overline{w}}\rangle, w \in \mathbb{C}_+ $ satisfies a certain averaging condition. Here for $a=c+id \in \mathbb{D}, f \in L_a^2(\mathbb{C}_+), W_af=(f \circ t_a) \frac{M^{\prime}}{M^{\prime} \circ t_a}, Ms=\frac{1-s}{1+s}, t_a(s)=\frac{-ids +(1-c)}{(1+c)s + id}$, and $b_{\overline{w}}(s)=\frac{1}{\sqrt{\pi}} \frac{1+w}{1+\overline{w}} \frac{2 \mbox {Re} w}{(s+w)^2}, w=M\overline {a}, s \in \mathbb{C}_+.$ Some applications of these results are also discussed.
Keywords
Right half plane, Bergman space, unitary operator, automorphism, Toeplitz operators
First Page
471
Last Page
486
Recommended Citation
DAS, NAMITA and BEHERA, JITENDRA KUMAR
(2018)
"On a class of unitary operators on the Bergman space of the right half plane,"
Turkish Journal of Mathematics: Vol. 42:
No.
2, Article 5.
https://doi.org/10.3906/mat-1509-50
Available at:
https://journals.tubitak.gov.tr/math/vol42/iss2/5