Turkish Journal of Mathematics
Abstract
Let $\beta>1$ be a real number. For any $x\in[0,1]$, let $r_{n}(x,\beta)$ be the maximal length of consecutive zero digits in the first $n$ digits of the $\beta$-expansion of $x$. In this note, it is proved that for any $0
DOI
10.3906/mat-1704-119
Keywords
$\beta$-Expansion, consecutive zero digits, Hausdorff dimension
First Page
656
Last Page
665
Recommended Citation
GAO, X, HU, H, & LI, Z (2018). A result on the maximal length of consecutive 0 digits in $\beta$-expansions. Turkish Journal of Mathematics 42 (2): 656-665. https://doi.org/10.3906/mat-1704-119