Turkish Journal of Mathematics
DOI
10.3906/mat-1704-119
Abstract
Let $\beta>1$ be a real number. For any $x\in[0,1]$, let $r_{n}(x,\beta)$ be the maximal length of consecutive zero digits in the first $n$ digits of the $\beta$-expansion of $x$. In this note, it is proved that for any $0
Keywords
$\beta$-Expansion, consecutive zero digits, Hausdorff dimension
First Page
656
Last Page
665
Recommended Citation
GAO, XIANG; HU, HUI; and LI, ZHIHUI
(2018)
"A result on the maximal length of consecutive 0 digits in $\beta$-expansions,"
Turkish Journal of Mathematics: Vol. 42:
No.
2, Article 19.
https://doi.org/10.3906/mat-1704-119
Available at:
https://journals.tubitak.gov.tr/math/vol42/iss2/19