•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1704-119

Abstract

Let $\beta>1$ be a real number. For any $x\in[0,1]$, let $r_{n}(x,\beta)$ be the maximal length of consecutive zero digits in the first $n$ digits of the $\beta$-expansion of $x$. In this note, it is proved that for any $0

Keywords

$\beta$-Expansion, consecutive zero digits, Hausdorff dimension

First Page

656

Last Page

665

Included in

Mathematics Commons

Share

COinS