Turkish Journal of Mathematics
DOI
10.3906/mat-1608-76
Abstract
We describe triangle coordinates for integral laminations on a nonorientable surface $N_{k,n}$ of genus $k$ with $n$ punctures and one boundary component, and we give an explicit bijection from the set of integral laminations on $N_{k,n}$ to $(\mathbb{Z}^{2(n+k-2)}\times \mathbb{Z}^k)\setminus \left\{0\right\}$.
Keywords
Nonorientable surfaces, triangle coordinates, Dynnikov coordinates
First Page
69
Last Page
82
Recommended Citation
YURTTAŞ, S. ÖYKÜ and PAMUK, MEHMETCİK
(2018)
"Integral laminations on nonorientable surfaces,"
Turkish Journal of Mathematics: Vol. 42:
No.
1, Article 8.
https://doi.org/10.3906/mat-1608-76
Available at:
https://journals.tubitak.gov.tr/math/vol42/iss1/8