Turkish Journal of Mathematics
Abstract
We describe triangle coordinates for integral laminations on a nonorientable surface $N_{k,n}$ of genus $k$ with $n$ punctures and one boundary component, and we give an explicit bijection from the set of integral laminations on $N_{k,n}$ to $(\mathbb{Z}^{2(n+k-2)}\times \mathbb{Z}^k)\setminus \left\{0\right\}$.
DOI
10.3906/mat-1608-76
Keywords
Nonorientable surfaces, triangle coordinates, Dynnikov coordinates
First Page
69
Last Page
82
Recommended Citation
YURTTAŞ, S. Ö, & PAMUK, M (2018). Integral laminations on nonorientable surfaces. Turkish Journal of Mathematics 42 (1): 69-82. https://doi.org/10.3906/mat-1608-76