•  
  •  
 

Turkish Journal of Mathematics

Abstract

We describe triangle coordinates for integral laminations on a nonorientable surface $N_{k,n}$ of genus $k$ with $n$ punctures and one boundary component, and we give an explicit bijection from the set of integral laminations on $N_{k,n}$ to $(\mathbb{Z}^{2(n+k-2)}\times \mathbb{Z}^k)\setminus \left\{0\right\}$.

DOI

10.3906/mat-1608-76

Keywords

Nonorientable surfaces, triangle coordinates, Dynnikov coordinates

First Page

69

Last Page

82

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 2
  • Usage
    • Downloads: 53
    • Abstract Views: 33
  • Captures
    • Readers: 2
see details

Included in

Mathematics Commons

Share

COinS