•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1608-76

Abstract

We describe triangle coordinates for integral laminations on a nonorientable surface $N_{k,n}$ of genus $k$ with $n$ punctures and one boundary component, and we give an explicit bijection from the set of integral laminations on $N_{k,n}$ to $(\mathbb{Z}^{2(n+k-2)}\times \mathbb{Z}^k)\setminus \left\{0\right\}$.

Keywords

Nonorientable surfaces, triangle coordinates, Dynnikov coordinates

First Page

69

Last Page

82

Included in

Mathematics Commons

Share

COinS