•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1703-61

Abstract

We study positive $C^1$ functions $z=f(x), x=(x_1,\cdots, x_n)$ defined on the $n$-dimensional Euclidean space $ \mathbb R^{n}$. For $x=(x_1,\cdots, x_n)$ with nonzero numbers $x_1, \cdots, x_n$, we consider the rectangular domain $I(x)=I(x_1)\times \cdots \times I(x_n)\subset \mathbb R^{n}$, where $I(x_i)= [0, x_i]$ if $x_i>0$ and $I(x_i)= [x_i,0]$ if $x_i

First Page

360

Last Page

372

Included in

Mathematics Commons

Share

COinS