•  
  •  
 

Turkish Journal of Mathematics

Abstract

Let $\mathcal{A}$ be an algebra. A linear mapping $d:\mathcal{A}\to\mathcal{A}$ is called a derivation if $d(ab)=d(a)b+ad(b)$ for each $a,b\in\mathcal{A}$. Given two derivations $d$ and $d'$ on a C$^*$-algebra $\mathcal{A}$, we prove that there exists a derivation $D$ on $\mathcal A$ such that $dd'+d'd=D^2$ if and only if $d$ and $ d' $ are linearly dependent.

DOI

10.3906/mat-1601-88

Keywords

Derivation; C$^*$-algebra

First Page

21

Last Page

27

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 1
  • Usage
    • Downloads: 53
    • Abstract Views: 7
  • Captures
    • Readers: 1
see details

Included in

Mathematics Commons

Share

COinS