•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1610-57

Abstract

An open type mixed quadrature rule is constructed blending the anti-Gauss 3-point rule with Steffensen's 4-point rule. The analytical convergence of the mixed rule is studied. An adaptive integration scheme is designed based on the mixed quadrature rule. A comparative study of the mixed quadrature rule and the Gauss‒Laguerre quadrature rule is given by evaluating several improper integrals of the form $\int\limits_{0}^{\infty}e^{-x}f(x)dx$. The advantage of implementing mixed quadrature rule in developing an efficient adaptive integration scheme is shown by evaluating some improper integrals.

First Page

293

Last Page

306

Included in

Mathematics Commons

Share

COinS