Turkish Journal of Mathematics
DOI
10.3906/mat-1604-109
Abstract
A Cayley graph $\Gamma=Cay(G, S)$ on a group $G$ with respective toa subset $S\subseteq G$, $S=S^{-1}, 1\notın S$, is said to be normaledge-transitive if $N_{\mathbb{A}ut(\Gamma)}(\rho(G))$ is transitiveon edges of $\Gamma$, where $\rho(G)$ is a subgroup of $\mathbb{A}ut(\Gamma)$isomorphic to $G$. We determine all connected tetravalent normaledge-transitive Cayley graphs on the modular group of order $8n$in the case that every element of $S$ is of order $4n$.
Keywords
Cayley graph, edge-transitive, modular group
First Page
1308
Last Page
1312
Recommended Citation
SHARIFI, HESAM and DARAFSHEH, MOHAMMAD REZA
(2017)
"On tetravalent normal edge-transitive Cayley graphs on the modular group,"
Turkish Journal of Mathematics: Vol. 41:
No.
5, Article 19.
https://doi.org/10.3906/mat-1604-109
Available at:
https://journals.tubitak.gov.tr/math/vol41/iss5/19