Turkish Journal of Mathematics
Abstract
A Cayley graph $\Gamma=Cay(G, S)$ on a group $G$ with respective toa subset $S\subseteq G$, $S=S^{-1}, 1\notın S$, is said to be normaledge-transitive if $N_{\mathbb{A}ut(\Gamma)}(\rho(G))$ is transitiveon edges of $\Gamma$, where $\rho(G)$ is a subgroup of $\mathbb{A}ut(\Gamma)$isomorphic to $G$. We determine all connected tetravalent normaledge-transitive Cayley graphs on the modular group of order $8n$in the case that every element of $S$ is of order $4n$.
DOI
10.3906/mat-1604-109
Keywords
Cayley graph, edge-transitive, modular group
First Page
1308
Last Page
1312
Recommended Citation
SHARIFI, H, & DARAFSHEH, M. R (2017). On tetravalent normal edge-transitive Cayley graphs on the modular group. Turkish Journal of Mathematics 41 (5): 1308-1312. https://doi.org/10.3906/mat-1604-109