Turkish Journal of Mathematics
Abstract
We fix a proper class of triangles $\xi$ in a triangulated category $\mathcal{C}$. Let $\mathcal{W}$ be a class of objects in $\mathcal{C}$ such that $\xi xt^i_\xi(W,\ W')=0$ for all $W, W'\in\mathcal{W}$ and all $i\geq 1$. In this paper, we introduce the notion of $\mathcal{W}$-Gorenstein objects and $\mathcal{G}(\mathcal{W})$-(co)resolution dimensions of any object in $\mathcal{C}$ and study the properties of $\mathcal{W}$-Gorenstein objects and characterize the finite $\mathcal{G}(\mathcal{W})$-(co)resolution dimensions of any object. Some applications are given.
DOI
10.3906/mat-1507-61
Keywords
Triangulated category, proper class of triangles, $\mathcal{W}$-Gorenstein object
First Page
138
Last Page
157
Recommended Citation
HUANG, C, & LIU, K (2017). $\mathcal{W}$-Gorenstein objects in triangulated categories. Turkish Journal of Mathematics 41 (1): 138-157. https://doi.org/10.3906/mat-1507-61