Turkish Journal of Mathematics
DOI
10.3906/mat-1504-16
Abstract
In this paper, using some combinatorial identities, we present new congruences involving central binomial coefficients and harmonic, Catalan, and Fibonacci numbers. For example, for an odd prime $p$, we have \begin{eqnarray*} \sum\limits_{k=1}^{\left( p-1\right) /2}\left( -1\right) ^{k}\binom{2k}{k}% H_{k-1} &\equiv &\frac{2^{p}}{p}\left( 2F_{p+1}-5^{\left( p-1\right) /2}-1\right) ({\rm mod\ }p), \\ \sum\limits_{k=0}^{\left( p-1\right) /2}\frac{H_{k}C_{k}}{\left( -4\right) ^{k}} &\equiv &2\frac{Q_{p+1}}{p}-\frac{2^{p+1}}{p}\left( 1+2^{\left( p+1\right) /2}\right) ({\rm mod\ }p), \end{eqnarray*}% and for $\left( \frac{5}{p}\right) =1,$% \begin{equation*} \sum\limits_{k=1}^{\left( p-1\right) /2}\binom{2k}{k}\frac{H_{k-1}F_{k}}{% \left( -4\right) ^{k}}\equiv \frac{1}{p}\left( F_{2p+1}-F_{p+2}\right) -% \frac{2^{p}}{p}F_{p-1}({\rm mod\ }p), \end{equation*} where $\left\{ F_{n}\right\} $ is the Fibonacci sequence and $\left\{ Q_{n}\right\} $ is the Pell-Lucas sequence.
Keywords
Central binomial coefficients, harmonic numbers, Catalan numbers, Fibonacci numbers, Pell numbers
First Page
973
Last Page
985
Recommended Citation
KOPARAL, SİBEL and ÖMÜR, NEŞE
(2016)
"On congruences related to central binomial coefficients, harmonic and Lucasnumbers,"
Turkish Journal of Mathematics: Vol. 40:
No.
5, Article 4.
https://doi.org/10.3906/mat-1504-16
Available at:
https://journals.tubitak.gov.tr/math/vol40/iss5/4