•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1506-59

Abstract

In this paper, we use the Brouwer degree to prove existence results of positive solutions for the following difference systems: $$\aligned &{D}_k\Delta^2(A_{k-1}-A^0_{k-1})-(A_{k}-A^0_{k})+N_kf(k, A_{k})=0,\ \ k\in[2, n-1]_\mathbb{Z},\\ &\Delta^2N_{k-1}+\Delta[g(k, A_{k}, \Delta A_{k-1})N_k]-w^2(N_k-1)=0,\ \ k\in[2, n-1]_\mathbb{Z},\\ &\Delta A_{1}=0=\Delta A_{n-1},\ \ \Delta N_{1}=0=\Delta N_{n-1}, \endaligned\eqno $$ where the assumptions on $w,\ D_k, A_k^0, f$, and $g$ are motivated by some mathematical models for the burglary of houses.

Keywords

Neumann problems, Brouwer degree, positive solution, models for house burglary

First Page

1049

Last Page

1057

Included in

Mathematics Commons

Share

COinS