•  
  •  
 

Turkish Journal of Mathematics

Authors

GUANGJUN ZHU

Abstract

Let $S=K[x_{1},\dots,x_{n}]$ be a polynomial ring over a field $K$ in $n$ variables and $I$ a squarefree monomial ideal of $S$ with Schmitt--Vogel number $sv(I)$. In this paper, we show that $\mbox{sdepth}\,(I)\geq \mbox{max}\,\{1, n-1-\lfloor \frac{sv(I)}{2}\rfloor\},$ which improves the lower bound obtained by Herzog, Vladoiu, and Zheng. As some applications, we show that Stanley's conjecture holds for the edge ideals of some special $n$-cyclic graphs with a common edge.

DOI

10.3906/mat-1505-90

Keywords

Stanley depth, Stanley conjecture, monomial ideal, Schmitt--Vogel number, $n$-cyclic graph

First Page

816

Last Page

823

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 1
  • Usage
    • Downloads: 34
    • Abstract Views: 6
  • Captures
    • Readers: 1
see details

Included in

Mathematics Commons

Share

COinS