Turkish Journal of Mathematics
DOI
10.3906/mat-1502-23
Abstract
Let $\left( \text{X,}\Sigma ,\mu \right) $ and $\left( \text{X,}\Sigma ,\nu \right) $ be measure spaces. Assume that $L^{p_{1}\left( .\right) ,q_{1}\left( .\right) }\left( X,\mu \right) $ and $L^{p_{2}\left( .\right) ,q_{2}\left( .\right) }\left( X,\nu \right) $ are two variable exponent Lorentz spaces where $p,q\in P_{0}\left( \left[ 0,l\right] \right) $. In this paper we investigated the existence of the inclusion $L^{p_{1}\left( .\right) ,q_{1}\left( .\right) }\left( X,\mu \right) $ $\subset L^{p_{2}\left( .\right) ,q_{2}\left( .\right) }\left( X,\nu \right) $ under what conditions for two measures $\mu $ and $\nu $ on $\left( X,\Sigma \right) .$
Keywords
Inclusion, variable exponent Lorentz space
First Page
605
Last Page
619
Recommended Citation
KULAK, ÖZNUR
(2016)
"The inclusion theorems for variable exponent Lorentz spaces,"
Turkish Journal of Mathematics: Vol. 40:
No.
3, Article 10.
https://doi.org/10.3906/mat-1502-23
Available at:
https://journals.tubitak.gov.tr/math/vol40/iss3/10