•  
  •  
 

Turkish Journal of Mathematics

Authors

ÖZNUR KULAK

DOI

10.3906/mat-1502-23

Abstract

Let $\left( \text{X,}\Sigma ,\mu \right) $ and $\left( \text{X,}\Sigma ,\nu \right) $ be measure spaces. Assume that $L^{p_{1}\left( .\right) ,q_{1}\left( .\right) }\left( X,\mu \right) $ and $L^{p_{2}\left( .\right) ,q_{2}\left( .\right) }\left( X,\nu \right) $ are two variable exponent Lorentz spaces where $p,q\in P_{0}\left( \left[ 0,l\right] \right) $. In this paper we investigated the existence of the inclusion $L^{p_{1}\left( .\right) ,q_{1}\left( .\right) }\left( X,\mu \right) $ $\subset L^{p_{2}\left( .\right) ,q_{2}\left( .\right) }\left( X,\nu \right) $ under what conditions for two measures $\mu $ and $\nu $ on $\left( X,\Sigma \right) .$

Keywords

Inclusion, variable exponent Lorentz space

First Page

605

Last Page

619

Included in

Mathematics Commons

Share

COinS