•  
  •  
 

Turkish Journal of Mathematics

Authors

ÖZNUR KULAK

Abstract

Let $\left( \text{X,}\Sigma ,\mu \right) $ and $\left( \text{X,}\Sigma ,\nu \right) $ be measure spaces. Assume that $L^{p_{1}\left( .\right) ,q_{1}\left( .\right) }\left( X,\mu \right) $ and $L^{p_{2}\left( .\right) ,q_{2}\left( .\right) }\left( X,\nu \right) $ are two variable exponent Lorentz spaces where $p,q\in P_{0}\left( \left[ 0,l\right] \right) $. In this paper we investigated the existence of the inclusion $L^{p_{1}\left( .\right) ,q_{1}\left( .\right) }\left( X,\mu \right) $ $\subset L^{p_{2}\left( .\right) ,q_{2}\left( .\right) }\left( X,\nu \right) $ under what conditions for two measures $\mu $ and $\nu $ on $\left( X,\Sigma \right) .$

DOI

10.3906/mat-1502-23

Keywords

Inclusion, variable exponent Lorentz space

First Page

605

Last Page

619

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 6
  • Usage
    • Downloads: 74
    • Abstract Views: 43
see details

Included in

Mathematics Commons

Share

COinS