•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1501-55

Abstract

Let $M$ be a module over a commutative ring $R.$ A proper submodule $N$ of $M$ is called weakly $2$-absorbing, if for $r,s\in R$ and $x\in M$ with $0\neq rsx\in N,$ either $rs\in (N:M)$ or $rx\in N$ or $sx\in N.$ We study the behavior of $(N:M)$ and $\sqrt{(N:M)},$ when $N$ is weakly $2$-absorbing. The weakly $2$-absorbing submodules when $R=R_1\oplus R_2$ are characterized. Moreover we characterize the faithful modules whose proper submodules are all weakly $2$-absorbing.

First Page

350

Last Page

364

Included in

Mathematics Commons

Share

COinS