•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1411-70

Abstract

In this paper, we introduce a new integral transform $\ _{q}\mathcal{E}_{2;1}$, which is the $q$-analogue of the $\mathcal{E}_{2;1}$-transform and can be regarded as a $\mathit{q}$-extension of the $\mathcal{E}_{2;1}$-transform. Some identities involving $~_{q}L_{2}$-transfom, $~_{q}\mathcal{L}_{2}$-transfom, and $\mathcal{P}_{q}$-transform are given. By making use of these identities and $\ _{q}\mathcal{E}_{2;1}$-transform, a new Parseval--Goldstein type theorem is obtained. Some examples are also given as an illustration of the main results presented here.

First Page

98

Last Page

107

Included in

Mathematics Commons

Share

COinS