•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1505-51

Abstract

Let $R$ be ring a with identity $1\neq 0$, $S_n(R)$ be a subring of the ring $T_n(R)$ of $n\times n$ upper triangular matrices over $R$, and $H_n(R)$ be the ring defined in the next section using $HR$, the ring of the Hurwitz series over $R$. In this paper, we introduce the zero-divisor graph $\overset{\rightarrow}{\Gamma}(S_n(R))$ and its underlying undirected graph $\Gamma(S_n(R))$ of $S_n(R)$. We give some basic graph theory properties of $\overset{\rightarrow}{\Gamma}(S_n(R))$. Moreover, we obtain some results of the zero-divisor directed graph of $\overset{\rightarrow}{\Gamma}(H_n(R))$.

First Page

201

Last Page

209

Included in

Mathematics Commons

Share

COinS