•  
  •  
 

Turkish Journal of Mathematics

Abstract

The aim of this paper is to define \ a new operator by using the generalized Struve functions $\sum\limits_{n=0}^{\infty }\frac{\left( -c/4\right) ^{n}}{\left( 3/2\right) _{n}\left( k\right) _{n}}z^{n+1}$ with $% k$ $=p+$ $\left( b+2\right) /2\neq 0,-1,-2,\ldots $ and $b,c,k\in \mathbb{C} $. By using this operator we define a subclass of analytic functions. We discuss some properties of this class such as inclusion problems, radius problems, and some other interesting properties related to this operator.

DOI

10.3906/mat-1501-48

Keywords

Analytic functions, subordination, generalized Struve functions

First Page

931

Last Page

944

Included in

Mathematics Commons

Share

COinS