•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1501-48

Abstract

The aim of this paper is to define \ a new operator by using the generalized Struve functions $\sum\limits_{n=0}^{\infty }\frac{\left( -c/4\right) ^{n}}{\left( 3/2\right) _{n}\left( k\right) _{n}}z^{n+1}$ with $% k$ $=p+$ $\left( b+2\right) /2\neq 0,-1,-2,\ldots $ and $b,c,k\in \mathbb{C} $. By using this operator we define a subclass of analytic functions. We discuss some properties of this class such as inclusion problems, radius problems, and some other interesting properties related to this operator.

Keywords

Analytic functions, subordination, generalized Struve functions

First Page

931

Last Page

944

Included in

Mathematics Commons

Share

COinS