•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1408-13

Abstract

A ring $R$ is uniquely (strongly) clean provided that for any $a\in R$ there exists a unique idempotent $e\in R$ \big($e\in comm(a)$\big) such that $a-e\in U(R)$. We prove, in this note, that a ring $R$ is uniquely clean and uniquely bleached if and only if $R$ is abelian, ${\mathbb{T}}_{n}(R)$ is uniquely strongly clean for all $n\geq 1$, i.e. every $n\times n$ triangular matrix over $R$ is uniquely strongly clean, if and only if $R$ is abelian, and ${\mathbb{T}}_{n}(R)$ is uniquely strongly clean for some $n\geq 1$. In the commutative case, more explicit results are obtained.

Keywords

Uniquely strongly clean ring, uniquely bleached ring, triangular matrix ring

First Page

645

Last Page

649

Included in

Mathematics Commons

Share

COinS