•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1406-31

Abstract

Let $\{\theta_n\}_{n=1}^\infty$ be a sequence of words. If there exists a positive integer $n$ such that $\theta_m(G)=1$ for every $m\geq n$, then we say that $G$ satisfies (*) and denote the class of all groups satisfying (*) by $\mathfrak{X}_{\{\theta_n\}_{n=1}^\infty}$. If for every proper subgroup $K$ of $G$, $K\in \mathfrak{X}_{\{\theta_n\}_{n=1}^\infty}$ but $G\notin\mathfrak{X}_{\{\theta_n\}_{n=1}^\infty}$, then we call $G$ a minimal non-$\mathfrak{X}_{\{\theta_n\}_{n=1}^\infty}$-group. Assume that $G$ is an infinite locally finite group with trivial center and $\theta_i(G)=G$ for all $i\geq 1$. In this case we mainly prove that there exists a positive integer $t$ such that for every proper normal subgroup $N$ of $G$, either $\theta_t(N)=1$ or $\theta_t(C_G(N))=1$. We also give certain useful applications of the main result.

Keywords

Locally finite groups, soluble groups, nilpotent groups, sequence of words, outer commutator words

First Page

564

Last Page

569

Included in

Mathematics Commons

Share

COinS