Turkish Journal of Mathematics
DOI
10.3906/mat-1401-12
Abstract
Recall that a map T \colon C(X,E) \to C(Y,F), where X, Y are Tychonoff spaces and E, F are normed spaces, is said to be separating, if for any 2 functions f,g \in C(X,E) we have c(T(f)) \cap c(T(g))= \varnothing provided c(f) \cap c(g) = \varnothing. Here c(f) is the co-zero set of f. A typical result generalizing the Banach--Stone theorem is of the following type (established by Araujo): if T is bijective and additive such that both T and T^{-1} are separating, then the realcompactification \nu X of X is homeomorphic to \nu Y. In this paper we show that a similar result is true if additivity is replaced by subadditivity (a map T is called subadditive if T(f+g)(y) \leq T(f)(y) + T(g)(y) for any f,g \in C(X,E) and any y \in Y). Here is our main result (a stronger version is actually established): if T \colon C(X,E) \to C(Y,F) is a separating subadditive map, then there exists a continuous map S_Y\colon \beta Y \rightarrow \beta X. Moreover, S_Y is surjective provided T(f)=0 iff f=0. In particular, when T is a bijection such that both T and T^{-1} are separating and subadditive, \beta X is homeomorphic to \beta Y. We also provide an example of a biseparating subadditive map from C(R) onto C(R), which is not additive.
Keywords
Function spaces, separating maps, supports, subadditive maps
First Page
168
Last Page
173
Recommended Citation
VALOV, VESKO
(2015)
"On separating subadditive maps,"
Turkish Journal of Mathematics: Vol. 39:
No.
2, Article 3.
https://doi.org/10.3906/mat-1401-12
Available at:
https://journals.tubitak.gov.tr/math/vol39/iss2/3