•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1307-24

Abstract

Let R be a commutative ring and I(R) denote the multiplicative group of all invertible fractional ideals of R, ordered by A \leqslant B if and only if B \subseteq A. If R is a Marot ring of Krull type, then R_{(P_i)}, where {P_i}_{i \in I} are a collection of prime regular ideals of R, is a valuation ring and R = \bigcap R_{(P_i)}. We denote by G_i the value group of the valuation associated with R_{(P_i)}. We prove that there is an order homomorphism from I(R) into the cardinal direct sum \coprod_{i \in I} G_i and we investigate the conditions that make this monomorphism onto for R.

Keywords

Krull ring, ring of Krull type, valuation Marot ring

First Page

614

Last Page

624

Included in

Mathematics Commons

Share

COinS