•  
  •  
 

Turkish Journal of Mathematics

Authors

DIETMAR FERGER

DOI

10.3906/mat-1301-6

Abstract

We give moment equalities for sums of independent and identically distributed random variables including, in particular, centered and specifically symmetric summands. Two different types of proofs, combinatorial and analytical, lead to 2 different types of formulas. Furthermore, the combinatorial method allows us to find the optimal lower and upper constants in the Marcinkiewicz--Zygmund inequalities in the case of even moment-orders. Our results are applied to give elementary proofs of the classical central limit theorem (CLT) and of the CLT for the empirical bootstrap. Moreover, we derive moment and exponential inequalities for self-normalized sums.

Keywords

Moments, integer partitions, Faà di Bruno's chain rule, Marcinkiewicz--Zygmund inequalities, bootstrap, self-normalized sums

First Page

558

Last Page

575

Included in

Mathematics Commons

Share

COinS