Turkish Journal of Mathematics
DOI
10.3906/mat-1211-7
Abstract
We prove that in the pure mapping class group of the 3-punctured projective plane equipped with the word metric induced by certain generating set, the ratio of the number of pseudo-Anosov elements to the number of all elements in a ball centered at the identity tends to one, as the radius of the ball tends to infinity. We also compute growth functions of the sets of reducible and pseudo-Anosov elements.
Keywords
Mapping class group, nonorientable surface, growth functions
First Page
524
Last Page
534
Recommended Citation
SZEPIETOWSKI, BLAZEJ
(2014)
"Counting pseudo-Anosov mapping classes on the 3-punctured projective plane,"
Turkish Journal of Mathematics: Vol. 38:
No.
3, Article 13.
https://doi.org/10.3906/mat-1211-7
Available at:
https://journals.tubitak.gov.tr/math/vol38/iss3/13