Turkish Journal of Mathematics
DOI
10.3906/mat-1304-3
Abstract
We give necessary and sufficient conditions for warped product manifolds (M,g), of dimension \geqslant 4, with 1-dimensional base, and in particular, for generalized Robertson--Walker spacetimes, to satisfy some generalized Einstein metric condition. Namely, the difference tensor R . C - C . R, formed from the curvature tensor R and the Weyl conformal curvature tensor C, is expressed by the Tachibana tensor Q(S,R) formed from the Ricci tensor S and R. We also construct suitable examples of such manifolds. They are quasi-Einstein, i.e. at every point of M rank (S - \alpha g) \leqslant 1, for some \alpha \in R, or non-quasi-Einstein.
Keywords
Warped product, generalized Robertson--Walker spacetime, Einstein manifold, quasi-Einstein manifold, essentially conformally symmetric manifold, Tachibana tensor, generalized Einstein metric condition, pseudosymmetry type curvature condition, Ricci-pseudosymmetric hypersurface
First Page
353
Last Page
373
Recommended Citation
ARSLAN, KADRİ; DESZCZ, RYSZARD; EZENTAŞ, RIDVAN; HOTLOS, MARIAN; and MURATHAN, CENGİZHAN
(2014)
"On generalized Robertson--Walker spacetimes satisfying some curvature condition,"
Turkish Journal of Mathematics: Vol. 38:
No.
2, Article 16.
https://doi.org/10.3906/mat-1304-3
Available at:
https://journals.tubitak.gov.tr/math/vol38/iss2/16