Turkish Journal of Mathematics
DOI
10.3906/mat-1010-438
Abstract
The main aim of this paper is to prove that the maximal operator \overset{\sim}{\sigma}^{\ast}f:=\underset{n \in P} \sup\frac{ \sigma _nf }{\log^2 (n+1)} is bounded from the Hardy space H_{1/2} to the space L_{1/2}, where \sigma _nf are Fejér means of bounded Vilenkin-Fourier series.
Keywords
Vilenkin system, Fejéer means, martingale Hardy space
First Page
308
Last Page
318
Recommended Citation
TEPHNADZE, GEORGE
(2013)
"On the maximal operators of Vilenkin-Fejéer means,"
Turkish Journal of Mathematics: Vol. 37:
No.
2, Article 12.
https://doi.org/10.3906/mat-1010-438
Available at:
https://journals.tubitak.gov.tr/math/vol37/iss2/12