•  
  •  
 

Turkish Journal of Mathematics

DOI

10.3906/mat-1110-32

Abstract

In this study M_1(\Gamma _0(3) ,\chi _{-3}) , M_2(\Gamma_0(5), \chi _5) and M_3(\Gamma _0(7),\chi _{-7}) have been examined and the formulas for the Fourier Coefficients of theta series and the representation number of positive integers by some quadratic forms 3x_1^2+3x_1x_2+x_2^2, 5(x_1^2+x_1x_2+x_1x_3+x_1x_4+x_2^2+x_2x_3+ x_2x_4+x_3^2+x_3x_4)+2x_4^2, and 7(x_1^2+x_1x_2+x_1x_3+x_1x_4+x_1x_5+x_2^2+x_2x_3+x_2x_4+x_2x_5+ x_3^2+x_3x_4+x_3x_5+x_4^2+x_4x_5+x_5^2+7(x_1x_6+x_2x_6+x_3x_6+ x_4x_6+x_5x_6)+3x_6^2, are determined. This work is a correction to a paper of the same title by Ahmet Tekcan [5].

Keywords

Quadratic forms, representation numbers, theta series, cusp forms 11E25, 11E76

First Page

139

Last Page

144

Included in

Mathematics Commons

Share

COinS