Turkish Journal of Mathematics
DOI
10.3906/mat-1007-364
Abstract
A ring R is defined to be weakly normal if for all a, r \in R and e \in E(R), ae = 0 implies Rera is a nil left ideal of R, where E(R) stands for the set of all idempotent elements of R. It is proved that R is weakly normal if and only if Rer(1-e) is a nil left ideal of R for each e \in E(R) and r \in R if and only if T_n(R, R) is weakly normal for any positive integer n. And it follows that for a weakly normal ring R (1) R is Abelian if and only if R is strongly left idempotent reflexive; (2) R is reduced if and only if R is n-regular; (3) R is strongly regular if and only if R is regular; (4) R is clean if and only if R is exchange. (5) exchange rings have stable range 1.
Keywords
Weakly normal rings, Abelian rings, regular rings, quasi-normal rings, semiabelian rings, exchange rings, clean rings
First Page
47
Last Page
57
Recommended Citation
WEİ, JUNCHAO and LI, LIBIN
(2012)
"Weakly normal rings,"
Turkish Journal of Mathematics: Vol. 36:
No.
1, Article 4.
https://doi.org/10.3906/mat-1007-364
Available at:
https://journals.tubitak.gov.tr/math/vol36/iss1/4