Turkish Journal of Mathematics
DOI
10.3906/mat-0810-25
Abstract
The motivation of this paper is to find formulation of the SL(n,R)-equivalence of curves. The types for centro-equiaffine curves and for every type all invariant parametrizations for such curves are introduced. The problem of SL(n,R)-equivalence of centro-equiaffine curves is reduced to that of paths. The centro-equiaffine curvatures of path as a generating system of the differential ring of SL(n,R)-invariant differential polinomial functions of path are found. Global conditions of SL(n,R)-equivalence of curves are given in terms of the types and invariants. It is proved that the invariants are independent.
Keywords
Centro-equiaffine geometry, centro-equiaffine type of a curve, differential invariants of a curve, centro-equiaffine equivalence of curves.
First Page
95
Last Page
104
Recommended Citation
SAĞIROĞLU, YASEMİN and PEKŞEN, ÖMER
(2010)
"The equivalence of centro-equiaffine curves,"
Turkish Journal of Mathematics: Vol. 34:
No.
1, Article 9.
https://doi.org/10.3906/mat-0810-25
Available at:
https://journals.tubitak.gov.tr/math/vol34/iss1/9