•  
  •  
 

Turkish Journal of Mathematics

Abstract

In the following we show that a Stein filling S of the 3-torus T^3 is homeomorphic to D^2 \times T^2. In the proof we also show that if S is Stein and \partial S is diffeomorphic to the Seifert fibered 3-manifold -\Sigma (2,3,11) then b_1(S)=0 and Q_S=H. Similar results are obtained for the Poincaré homology sphere \pm \Sigma (2,3,5); in studying these fillings we apply recent gauge theoretic results, and prove our theorems by determining certain Seiberg-Witten invariants.

DOI

-

First Page

115

Last Page

130

Included in

Mathematics Commons

Share

COinS