Turkish Journal of Mathematics
DOI
-
Abstract
In this note we construct a nontrivial partial order on the identity component of the group of compactly supported contactomorphisms of \R^{2n+1} using the method of generating functions. Our construction is in the framework of the theory developed by Viterbo in the paper \cite{V} wherein, among other things, he showed how one could use generating functions to construct a partial order on the group of compactly supported Hamiltonian symplectomorphisms of \R^{2n}.
First Page
125
Last Page
136
Recommended Citation
BHUPAL, MOHAN (2001) "A partial order on the group of contactomorphisms of $\R^{2n+1}$ via generating functions," Turkish Journal of Mathematics: Vol. 25: No. 1, Article 7. Available at: https://journals.tubitak.gov.tr/math/vol25/iss1/7