Turkish Journal of Mathematics
Abstract
We show that every sequence $\{x_n\}_{n=1}^{\infty}$ in a real interpolation space $(E_0,E_1)_{\theta,q}$, $0 < \theta < 1$, $0 < q < \infty,$ of quasi Banach spaces $E_0,E_1,$ which is $0-$convergent in $E_0 + E_1$ but $\inf_n \;\ x_n\ _{(E_0,E_1)_{\theta,q}} > 0,$ has a subsequence which is equivalent to the standard unit basis of $\ell^q.$
DOI
-
Keywords
real interpolation method, quasi Banach spaces.
First Page
373
Last Page
378
Recommended Citation
MOLINA, J. A (2000). On subspaces isomorphic to l^q in interpolation of quasi Banach spaces. Turkish Journal of Mathematics 24 (4): 373-378. https://doi.org/-