Turkish Journal of Mathematics
DOI
-
Abstract
We show that every sequence $\{x_n\}_{n=1}^{\infty}$ in a real interpolation space $(E_0,E_1)_{\theta,q}$, $0 < \theta < 1$, $0 < q < \infty,$ of quasi Banach spaces $E_0,E_1,$ which is $0-$convergent in $E_0 + E_1$ but $\inf_n \;\ x_n\ _{(E_0,E_1)_{\theta,q}} > 0,$ has a subsequence which is equivalent to the standard unit basis of $\ell^q.$
Keywords
real interpolation method, quasi Banach spaces.
First Page
373
Last Page
378
Recommended Citation
MOLINA, J. A. LOPEZ (2000) "On subspaces isomorphic to l^q in interpolation of quasi Banach spaces," Turkish Journal of Mathematics: Vol. 24: No. 4, Article 6. Available at: https://journals.tubitak.gov.tr/math/vol24/iss4/6