•  
  •  
 

Turkish Journal of Mathematics

DOI

-

Abstract

The Cauchy problem for the equation \begin{equation} Mw\equiv \sum_{j=0}^m\sum_{s=0}^{l_j}a_{s,j}\frac{\partial^{s+j}w(z_1,z_2)}{\partial z_1^s\partial z_2^j}=0 \end{equation} \begin{equation} \frac{\partial^nw(z_1,z_2)}{\partial z_2^n}\mid_{z_{2}=0}=\varphi_n(z_1), n=0,1,\ldots , m-1 \end{equation} is investigated under the condition $l_j\leq l_m, j=0,1,\ldots,m-1$. It is shown that the operator of projection of solution of (1) on its initial data (2) in a definite situation has a linear continuous right inverse which can be determined effectively with the help of representing systems of exponentials in the space of initial data.

First Page

59

Last Page

66

Included in

Mathematics Commons

Share

COinS