•  
  •  
 

Turkish Journal of Mathematics

DOI

-

Abstract

In this paper, we prove the commutativity of a ring R with unity satisfying one of the following ring properties: (P_1) For each x, y in R, {1- h(yx^r)}[x,yx^r - f(yx^r)]{1-g(yx^r)}=0 for some (P_2) Given x, y in R, {1- h(yx^r)} [x,yx^r - f(x^ry)] {1-g(yx^r)}=0 and {1-~h(xy^r)}[y,y^rx-~f(xy^r)]{1-~g(xy^r)}=0 for some f(X),~f(X)\epsilonX^2Z[X] and g(X), ~g(X), h(X), ~h(X)\epsilonXZ[X]. (P_3) For each x, y \epsilon R, [x, yx^r - x^sf(y)x^t]=0 for some f(X)\epsilon X^2Z[X].

First Page

431

Last Page

435

Included in

Mathematics Commons

Share

COinS