Turkish Journal of Mathematics
Abstract
In this paper, we prove the commutativity of a ring R with unity satisfying one of the following ring properties: (P_1) For each x, y in R, {1- h(yx^r)}[x,yx^r - f(yx^r)]{1-g(yx^r)}=0 for some (P_2) Given x, y in R, {1- h(yx^r)} [x,yx^r - f(x^ry)] {1-g(yx^r)}=0 and {1-~h(xy^r)}[y,y^rx-~f(xy^r)]{1-~g(xy^r)}=0 for some f(X),~f(X)\epsilonX^2Z[X] and g(X), ~g(X), h(X), ~h(X)\epsilonXZ[X]. (P_3) For each x, y \epsilon R, [x, yx^r - x^sf(y)x^t]=0 for some f(X)\epsilon X^2Z[X].
DOI
-
First Page
431
Last Page
435
Recommended Citation
ABUJABAL, Hamza A.S. (1997) "Some Commutativity Properties For Rings With Unity," Turkish Journal of Mathematics: Vol. 21: No. 4, Article 5. Available at: https://journals.tubitak.gov.tr/math/vol21/iss4/5