Turkish Journal of Mathematics
DOI
-
Abstract
Let R be a prime ring, char R\neq 2,3 \, \sigma, \tau : R\rightarrow R two automorphisms, U a nonzero (\sigma, \tau)- Lie ideal of R and o\neq d : R\rightarrow R$ a derivation such that \sigma d = d\sigma, \tau d = d\tau. In this paper we have proved the following results. (1) If d (U) \subset Z then U\subset Z (2) If d(U) \subset U and d^2 (U) \subset Z then U\subset Z.
First Page
233
Last Page
236
Recommended Citation
SOYTÜRK, M. (1996) "(\sigma, \tau)- LIE IDEALS IN PRIME RINGS WITH DERIVATION," Turkish Journal of Mathematics: Vol. 20: No. 2, Article 13. Available at: https://journals.tubitak.gov.tr/math/vol20/iss2/13