Turkish Journal of Mathematics
Abstract
Let R be a prime ring, char R\neq 2,3 \, \sigma, \tau : R\rightarrow R two automorphisms, U a nonzero (\sigma, \tau)- Lie ideal of R and o\neq d : R\rightarrow R$ a derivation such that \sigma d = d\sigma, \tau d = d\tau. In this paper we have proved the following results. (1) If d (U) \subset Z then U\subset Z (2) If d(U) \subset U and d^2 (U) \subset Z then U\subset Z.
DOI
-
First Page
233
Last Page
236
Recommended Citation
SOYTÜRK, M (1996). (\sigma, \tau)- LIE IDEALS IN PRIME RINGS WITH DERIVATION. Turkish Journal of Mathematics 20 (2): 233-236. https://doi.org/-